Lock-Free Contention Adapting Search Trees

Chris Blythe, Nick Cunningham, and Jeff Hoskins
November 30, 2018

Abstract

The prevalence of larger and larger datasets necessitates modifications to the means
by which these data are stored and accessed. To efficiently increase the throughput
of database operations under heavy load, the problem of data contention must be ad-
dressed. Windblad et al. did so by developing a lock-free binary tree that dynamically
adjusts the distribution of the data within the search tree. In this paper, we seek to
implement the basic structure and functionality of their lock-free contention adapting
search tree (LFCAT). The throughput of our implementation will be measured under
varying concurrency and operational loads.

LFCAT Code Repository: https://github.com/ucfblythe/COP6616-LFCAT/
LFCAT STM Code Repository: https://github.com/ucfblythe/COP6616-LFCATSTM/

1 Introduction

As the prevalence of digital technology in modern society has steadily increased over the
past decade, so too has the quantity of information that has been produced. The efficient
acquisition, processing, and utilization of these massive unstructured data sets has become a
crucial area of research. Cloud processing of this ”Big Data” has become incredibly common
as different industries rely on insights from analyzing this data to make long-term business
decisions in real-time. Unfortunately, traditional relational database models have trouble
adapting to the variety and scale of such large sets of data as they require a fixed predefined
structure, complex fail-over schemes, and costly partitioning to handle the increased capac-
ity [1]. Alternatively, modern NoSQL databases attempt to provide scalability, performance,
availability, and flexibility [I] as a means of coping with variety, throughput, and amount of
data with which modern database systems must handle.

One innovative implementation of a NoSQL database is known as the key-value store
model. This model is quite flexible as it simplifies the storage problem to a key used for
indexing within the structure, and a value or a set of values to be stored as a generic blob.
This simplicity means that it is easy to perform single-item operations including contains,
insert, and remove as well as multi-item operations including range query which returns all
values whose keys are within a specified range. However, the problem of data contention,
that is multiple operations seeking to utilize the same data, is still a limiting factor for the


https://github.com/ucfblythe/COP6616-LFCAT/
https://github.com/ucfblythe/COP6616-LFCATSTM/

performance of the database especially as the number of cores in a system increases.

2 Contention Adaptation

To better understand the problem of contention in the key-value model, consider a binary
tree holding a set of keys in the leaf nodes. When a static synchronization strategy with
a fixed granularity is used to overcome contention within the tree, either single-key opera-
tions such as insert, remove, and contains will perform well or multi-key operations such as
range query will, but not both. If a fine-grain synchronization strategy is used, single-key
operations will perform well since they will experience contention infrequently, but multi-key
operation performance will suffer since the operations must perform a large amount of over-
head to access each node in the query. Conversely, if a coarse-grain synchronization strategy
is used, multi-key operations will perform well since fewer places in the tree require syn-
chronization, but single-key operations will perform worse since more contention will occur
even if the single-key operations are being performed on different nodes that are logically
unrelated. Attempting to fine-tune the granularity of synchronization cannot account for
both cases efficiently. To do so would require a priori knowledge of the level of contention
and the distribution of the operations to be performed. Worse, if the amount of contention
within the tree changes over time or different parts of the tree experience differing amounts
of contention, static approaches cannot account for these types of variations.

A dynamic synchronization strategy that adapts to the amount of contention that is
occurring within a part of the tree at a given time can outperform static synchronization
strategies. Leaf nodes that experience a high amount of contention from many single-key
operations colliding at a node are split into multiple nodes with a new route node connecting
the two together to reduce contention. Leaf nodes that experience low amounts of contention
from use predominately with multi-key operations and few single-key operations are merged
with neighboring nodes to reduce synchronization overhead when multi-key operations op-
erations are performed.

In a 2015 paper, Sagonas and Winblad describe a lock-based contention adaptive tree
which adjusts the synchronization granularity based on the heuristics of the leaf nodes in the
tree [2]. When a leaf node experiences contention above a set threshold, the set of keys held
in that node is split in half with each half being placed in a new leaf node. Thus, the level
of contention on each of the new leaf nodes is lower than the original node. Additionally,
when adjacent nodes experience contention below a set threshold, the keys held in these
nodes are combined into a single set and are placed in a new leaf node. Recently, Sagonas,
Winblad, and Jonsson sought to further improve performance of these trees by removing the
need for locks [3]. This lock-free contention adapting search-tree (LFCAT) is what we seck
to implement in this paper.



3 Related Works

Due to the high demand for research in this field several efficient data structures that
provide concurrent range query support already exist. One such structure with similarities
to the LECAT structure is the lock-free k-ary search tree [4]. The k-ary tree provides an
unbalanced search tree containing k keys in immutable nodes. Queries in the k-ary search
tree are done using a read-validate method. If relevant nodes in the structure are modified
during or after a read then the validate process fails and the operation must be retried.
The k-ary tree shows the shortcomings of a fixed granularity approach, as varying types of
operations at a higher scale lead to consistently high conflict in the fixed structure and re-
quire continuous retries. Another method is known as the KiWi data structure [5], wherein
nodes are versioned by update operations based on a global counter. With high enough
concurrency between operations this global counter is likely to be a high source of con-
tention that does not scale with the number or types of operations applied. These methods
offer no adaptations depending on the current level of contention found in the structure.
The same authors of the LFCAT implementation originally explored the concept of con-
tention adaptation in a lock based implementation [2]. This lock-based implementation uses
mutable sequential structures to store items, which limits the amount of memory required
for update operations. However, the coarse synchronization of standard locks created a se-
quential bottleneck that limited the potential concurrency of operations over multiple nodes.

4 Data Structure Overview

4.1 Node Types

The LFCAT data structure is defined by a number of specialized nodes: route nodes,
base nodes, join-main nodes, join-neighbor nodes, and range nodes. Each node has its own
purpose and descriptive state that collectively describe the full state of the LFCAT. Route
nodes are used to define the path from the root node to a given leaf node. Like a standard
binary search tree, the route nodes each contain a key that is used to properly order the
tree. Key indexes are used to traverse route nodes until a leaf node is found. The leaf nodes
are defined as base nodes, and they contain the actual dataset stored as sets of key-value
pairs. The three remaining node types are used to implement the split, join, and range query
methods which are described below.

The structure of the dataset held in each base node is not constrained to be of any par-
ticular type. Because the storage mechanism is independent of the LFCAT protocols, the
datasets can be any container that holds the key-value pairs. While the datasets are not the
main focus of this paper, we should note that Sagonas, Winblad, and Jonsson used a simple
treap structure in their paper largely due to their efficiency in distributing values thus pro-
viding O(log n) lookup times. We sought to preserve the order of the keys in each dataset,
and opted to use an AVL tree in our implementation because AVL trees are guaranteed to
be balanced whereas treaps are randomly ordered.



A\

Y = {1-70}

Figure 1: Diagram of split adaptation with base nodes in red, route nodes in blue, and AVL trees in green.
A local route node is created with a key equal to the median value of the original AVL tree. New base nodes
are created, each containing half of the original AVL tree, which are assigned as the children of the local
route node. A CAS is performed to replace the old base node with the new route node, leaving the original
base node to be garbage collected.

4.2 High Contention Adaptation

Updates to any node in the LFCAT require that a local node be created, then modified,
and swapped with the original node using a Compare-And-Swap (CAS) operation. The CAS
is the linearization point of each operation as it is the moment when the local modification
become visible in the LFCAT. A failed CAS operation indicates that the original node is
experiencing contention. If the original node is a base node, its heuristic value is increased
and the update is attempted again. Repeated failures of single-key operations, like insert
and remove, will drive up the contention heuristic, indicating that the target node contains
a frequently accessed set of keys and that the base node should be split in order to reduce
the contention.

When a base node is split, each half of the original AVL tree is assigned to its own local
base node. A local route node is created containing the split key of the original AVL tree,
and the local base nodes are set as the route node’s children. The update to the LFCAT
structure takes effect when the old base node is swapped with the new route node using
CAS. This process is shown in Figure [I] By splitting the base node, the contention on this
set of keys is lowered, prompting fewer CAS failures, thus increasing the performance of the
LFCAT for single-key operations.



Figure 2: Diagram of range query. Yellow diamonds are range nodes that denote that they are currently
involved in a range query operation. All base nodes in range are found and replaced with range nodes via a
depth-first traversal from the lowest node in range to the highest. Once all nodes in range have been marked,
a new AVL tree consisting of the union of the trees on the marked nodes is returned.

4.3 Range Queries

Another common operation required of key-value store models is the range query, which
returns as set of key-value pairs within a specified key range. Range queries are difficult
to optimize because the number of key-value pairs that will be returned is not known in
advance. Given a search range, the range query operation traverses the structure, saving the
nodes encountered in stacks, and marking the relevant nodes. Figure [2| shows an example
of a range query traversal. The operation begins by traversing the LFCAT to find the base
node containing the lowest key within the specified range. The base node and its parent
are then placed in a stack. These nodes are marked as being a part of the range query by
replacing their nodes with range node copies via CAS. Starting from the base node with the
lowest key in the range, the range query operation checks the next leftmost node that has
yet to be visited. This is repeated until a base node containing a key that matches or exceeds
the upper limit of the range is reached. The stack of verified nodes is then traversed in order
to join each AVL tree into one result set. Other threads see a range query is complete when
the result set is populated. This is the linearization point of the range query.

4.4 Low Contention Adaptation

Unlike the individual node access of the insert and remove operations, range query perfor-
mance is adversely affected by sparsely distributed keys. Collecting keys spread over multiple
nodes requires more work for the range query operation because each node within the range
of the query must be replaced with a range node using CAS. The more nodes a range query
contains, the more nodes that must be swapped thereby increasing the overhead. When
a query encounters a range that contains multiple base nodes, the contention heuristic for
those nodes is lowered. Like the single-key operations, the range query also compares each
node’s heuristic to the contention thresholds and adapts if needed. If there are fewer CAS



Figure 3: Diagram of secure join. (1) Node B will be merged with its leftmost neighbor. (2) B is replaced
with a join-main node M and its parent is marked. (3) The leftmost neighbor is found and replaced with a
join-neighbor node N. (4) The grandparent of M is marked. (5) The replacement node R is prepared. Up to
this point, an operation can abort the join. The join operation continues from here via complete join shown
in Figure [4]



failures than there are multi-node ranges, the contention heuristic will eventually drop low
enough to call for the joining of one or more base nodes. By performing this adaptation,
future range queries will not have to swap as many nodes, thereby increasing the through-
put. Performance of single-key operations can also be improved if little or no contention is
experienced by making the path to a node shorter.

For low contention adaptation, two base nodes are merged via the join operation, result-
ing in a coarser granularity for the key distribution. When a join operation is performed
on a base node, the process is split into two parts labeled as secure join and complete join.
Secure join, as diagrammed in Figure [3] starts by swapping the base node with a join-main
node using CAS. Next, the leftmost neighbor (i.e. the next base node in key order) is found
via a depth-first traversal and swapped with a join-neighbor node, again using CAS. These
two join nodes indicate to other threads that a join operation is in progress and that these
nodes may not be replaced until the join is complete or aborted.

If these CAS operations are successful then the algorithm must also notify the grandpar-
ent route node of the target, since it will point to the newly joined base node once the join
operation is complete. This notification takes place through the CAS of an atomic reference
variable in the grandparent node, with the newly created join-main node. This CAS can
only succeed if no other node has marked the grandparent node for a join operation. Once
the grandparent is successfully notified, another CAS operation takes place where one of the
join-main node’s atomic references is swapped to point to a new base node that stores the
combined AVL tree of the join-main and join-neighbor nodes. Up to this point any other
operation could intercede and mark the join-main node as 'aborted’ since any operation has
higher priority than node maintenance.

Once the join-main node’s reference has been changed from a static 'preparation’ node
to a local joined node, the join operation is ready to be finalized via complete join as shown
in Figure From this point on, other operations will attempt to help complete the join
operation rather than simply aborting it. To complete the join operation the parent route of
the target node is logically marked as invalid, and any existing grandparent is made to point
to the replacing structure. If the join-neighbor node was a direct sibling of the join-main
node, then the replacement of the parent route node is simply the newly created base node
containing the joined data. However, if the join-neighbor node is the result of a deeper sub-
node structure then the parent node will be replaced by the top Route node that leads to
that join-neighbor node from the targets parent. The join-main node is no longer a logical
part of the LFCAT structure, but to describe it’s logical removal to other operations the join
must logically mark the node as completed by atomically setting one of it’s references to a
static ’"done’ node.



Figure 4: Diagram of complete join. (1) is a copy of (5) from Figurewith the relevant references emphasized.
(2) performs a CAS on the left child node of route node 60 to point from the old node N to the new replacement
node R. (3) Node N is now removed from the tree. Route node 40 is logically marked as invalid. (4) A CAS
is performed to replace the reference to route node 40 in the grandparent node with a reference to route
node 60. Route node 40 and node M are garbage collected, and the join operation is now complete.

5 Implementation

Our implementation follows along with the basic concepts of the LFCAT structure as
described in [3]. However, unlike the C based pseudo-code provided by the authors, our
implementation attempts to provide an object-oriented alternative written in Java. Using
polymorphic objects that implement generic interfaces allows us the flexibility to create a
more dynamic storage structure than that of the provided pseudo-code. Java was selected
as the implementation language largely due to it’s abstracted object reference model and
automated garbage collection. By removing the need for manual memory management tech-
niques, like object pooling, we simplify the overall structure and can better focus on the
algorithm implementation. Of course, this simplification will likely result in lower perfor-
mance as we do not have complete control over how, or when, memory gets collected nor
can our algorithm recycle memory locations that have already been allocated. A link to the
implementation is included at the end of the abstract. The repository contains the LFCAT
implementation and the STM implementation using Deuce-STM.

The most basic building block of our LFCAT structure is a Node class with abstract
methods that all other node types must implement. The Node class keeps track of the cur-
rent parent and usage statistics as well as ensuring that all other nodes can report whether
they are: in a replaceable state, in need of adaptation, or in need of assistance. The actual
implementation of these functions is left to the node types as each type has different be-
haviors under different conditions. Base nodes inherit from node, but also contain an AVL
tree member variable where in the actual key-value pairs will be stored. This type of object
oriented paradigm is used across our structure to provide a separation of concerns over the
different node types that leads to increased legibility, ease of use, and possible extensions in



future work.

Our implementation also differs from the original LFCAT structure in that we have intro-
duced the size of the AVL tree as a consideration in the statistics used for node adaptation.
Our implementation requires any update operation to make a full copy of the AVL tree in a
given node before attempting a CAS with the new local node. This copy is expensive as it
increases linearly with the number of nodes in the AVL tree. As the leaf node gets larger, this
cost becomes prohibitively expensive as most of the time of an update is spent on copying
the AVL tree before being updated. This cost is specially apparent when update operations
fail, as they will need to recopy the AVL tree from the new node in order to attempt their
update again. By introducing the tree size as a factor in the node statistic we are forcing
a balanced LFCAT structure that still allows for contention adaptations while distributing
the load across nodes.

In the early stages of our implementation we found that update operations from multiple
threads at one time could easily conflict and enter a race condition cycle of continuously
attempting the same operations. The original LFCAT implementation should address this
through the high contention adaption and by allowing threads that fail the update the chance
to help other threads with ongoing operations. Allowing the failed threads to provide con-
tinuing progress as well as a pseudo back-off so that failed threads do not all reattempt
at the same time. However, we found that under a high amount of contention the update
operations would often not be able to complete the split adaptation before another thread
invalidated the split node. Also, update operations cannot assist each other, which means
that if multiple threads with updates fail because of another update operation they will all
reattempt their updates at the same time. To help alleviate this contention we introduced an
elimination back-off to our update operations in the LFCAT structure. If an operation fails
and cannot assist another node then it must wait for a small period of randomly selected
time before attempting the operation again. If the operation continues to fail the guaranteed
amount of wait time is exponentially increased.

6 Testing

Our LFCAT implementation was tested under different concurrency and contention loads.
Varying the concurrency levels was achieved by using 1, 2, 4, 8, 16, and 32 threads for each of
the following operation distributions. Each scenario consists of randomly selected /ordered
operations that still conform to the distribution being tested. A real-world distribution
consisted of 80% contains, 9% insert, 9% remove, and 2% range queries. A high-contention
distribution consisted of 59.9% contains, 20% insert, 20% remove, and 0.1% range queries. A
low-contention distribution consisted of 70% contains, 5% insert, 5% remove, and 20% range
queries. A high-conflict distribution consisted of 0% contains, 40% insert, 40% remove, and
20% range queries. Each experiment consisted of 1,000,000 total operations, wherein the
throughput (operations per us) was measured as a function of the thread count for each
of the distributions. To further simulate a real world environment each test scenario is run



224
20
18-

t

Real World

High Contention
Low Contention

High Conflict

'y

Throughput (ops/us)

0 20
Threads

Figure 5: Performance of the LFCAT for 1, 2, 4, 8, 16, and 32 threads for various operational loads.

on a pre-populated LFCAT consisting of up to 500,000 entries spread out across the structure.

Two additional experiments were performed each using 16 threads and only a single op-
eration distribution. One varied the range query sizes with a distribution of 10% insert, 10%
remove, and 80% range queries and the other varied the maximum size of the AVL trees while
using the real-world distribution. Both of these experiments were used to test the limita-
tions on the adaptability of the LFCAT data structure. All tests were performed on an Intel
i7-8700K with 6 cores and 12 threads. The system has 12 MB of L3 cache and 16 GB of RAM.

7 Results

7.1 LFCAT Performance

Figure [5| shows the performance of our LFCAT implementation under the various loads
described above. The high conflict load performs the worst since this load receives the most
contention. All loads are ordered based on the percentage of range queries with higher
percentages resulting in lower throughput. This is due to the large amounts of contention
that occur when a range query is being performed. All nodes in the range must be marked
and cannot be updated until the range operation is complete. Since the range query has
the potential of hitting a large number of nodes, this effectively places a barrier that other
operations must wait on before proceeding. The throughput of the LFCAT scales well with
increasing number of threads even as context switching occurs when more than 12 threads
are utilized.

10



4.5

3.5

2.5
~&— Range Tests

Throughput (ops/us)

1.5

0.5

1] 200 400 600 800 1,000
Range Sizes

Figure 6: LFCAT throughput as a function of maximum range size. 10% insert, 10% remove, and 80% range
queries using 16 threads. Tested at range sizes of 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024

The performance of our LFCAT implementation performs slightly worse than the orig-
inal author’s implementation under similar conditions and loads. These differences in per-
formance can be attributed to the use of Java in our implementation instead of C in the
original paper. Our implementation sacrifices better performance for automatic memory
management via garbage collection which simplified implementation and ensured no mem-
ory leaks occurred. Also, Java ensures the ABA problem is avoided in the LFCAT algorithm
since an allocated object in the memory pool cannot be reused while any thread maintains
a reference to the original object.

7.2 Varying Range Query Sizes

The size of range queries has a significant impact on the throughput of the LFCAT.
Figure [6] shows the performance when the range size is varied from 1 to 1024 in powers of 2
increases. The throughput decreases monotonically with increasing range size. As the range
increases, more nodes must be marked and no insertions, deletions, or other range queries
can occur in the region that has been marked until the current range query completes. This
is to ensure the operations are linearizable with one another. Since no other operations
within the marked range can proceed until the range operation completes, this significantly
increases the contention each operation conflicts with as the range size increases. Another
simpler factor that affects the performance is that all range operations, regardless of the size,
count as a single operation for the throughput so as the range increases, the amount of time
for each range operation increases proportionally.

11



121 4

10| °©

=& Tree Size Tests

Throughput (ops/us)
-]

Iy

0 1,000 2,000 3,000 4,000 5,000
Tree Size

Figure 7: LFCAT throughput as a function of maximum AVL tree size. Tested on maximum tree sizes of
10, 100, 500, 1000, and 5000 under real-world load distribution using 16 threads.

7.3 Limiting AVL Tree Size

Another experiment was run which limited the maximum AVL tree size stored in the leaf
nodes of the LFCAT. This test was performed because a significant degradation in through-
put was observed when the AVL tree sizes were allowed to increase unbounded. Figure [7]
quantifies this observation. Maximum AVL tree sizes of 10, 100, 500, 1000, and 5000 were
tested. A peak is observed at a max AVL tree size of 100 then throughput quickly degrades
from there. Additional tests could pinpoint where the optimum is achieved, but the optimum
would vary with the load distributions so this analysis was not performed.

The reason the throughput degrades as the AVL tree size increases is because the AVL
tree must be copied each time a leaf node is updated. In their implementation, the authors
use a treap and claim an update could be performed in O(logn) time by only updating the
nodes along the path from the root to the key being updated, but we could not see how
this could be performed in place in either the treap or AVL tree without the need to copy
the tree first. if multiple threads attempted to update the same AVL tree in a given leaf
node, this could lead to a race condition and potential data corruption. The re-balancing of
the AVL tree does not adversely affect the performance as this operation can be performed
efficiently in O(logn) time.

7.4 STM Performance

Figure 8 shows the performance of a comparable binary search tree implemented using
the Deuce Software Transactional Memory Library (Deuce-STM). Our Deuce-STM imple-

12



.07-

.06
m
2 .05
(1]
= —&— Real World
= 04 High Contention
.g' @@= Low Contention
2 o3 ¥— High Conflict
2
=
F oz

.01

0o - L- —8 s

0 20 40

Threads

Figure 8: Performance of the Deuce-STM binary search tree for 1, 2, 4, 8, 16, and 32 threads for various
operational loads.

mentation is essentially a binary search tree with insert, remove, contains, and range query
support. It does not provide any of the contention adaptation methods described above, but
rather lets the operations resolve as STM transactions. The algorithm performs best using
a single thread and degrades as more threads are used.

The library does not efficiently perform synchronization between threads. As the number
of threads increases, more operations overlap and must be restarted. Since the operation
of updating and replacing an AVL tree in the leaf nodes is expensive, having to restart,
re-copy, update, and re-balance the new tree any time a conflict is encountered tanks the
performance. This is especially problematic for range queries which have a higher chance of
conflicting with other operations and are the most expensive operation to restart. As more
range queries are performed, the chances of a collision increase and more operations must be
restarted, degrading performance. Increasing the transaction size would further reduce the
performance because more conflicts would occur and these conflicts would be more expensive
to restart.

Overall, STM is not a good approach for the LFCAT algorithm. The LFCAT is highly
optimized for the task at hand and the STM library cannot automatically optimize the algo-
rithm better than human efforts. Additionally, the contention adaptation presented in this
paper is not well suited for STM libraries because split and join are specifically designed to
minimize the contention dynamically whereas the Deuce-STM library cannot perform such
adaptations, limiting the potential performance from the start.

13



8 Conclusion

This report presents an overview of the Lock-Free Contention Adaptive Search Tree along
with an implementation in Java. The code is accessible at the repository linked in the ab-
stract. The performance of our implementation was tested under varying operational loads
and levels of concurrency. Our implementation comes close to the performance reported in
the original paper. The differences can be attributed to the use of Java instead of C. Our
implementation sacrifices the better performance for automatic memory management which
simplified implementation. Overall, the LFCAT presents an efficient algorithm that performs
well under both low-contention and high-contention conditions and can scale efficiently with
additional processors. By adapting the structure of the tree to the local spatial and temporal
contention, the LFCAT performs on par with comparable algorithms designed for specific
scenarios and can significantly outperform those same algorithms for scenarios that are not
optimized for. The LFCAT is an efficient solution to bridge the gap between fine-grain and
course-grain synchronization approaches.

9 Future Work

Additional performance improvements could be achieved by optimizing the split and join
thresholds and the amounts by which the statistic value is changed when low- and high-
contention conditions occur. Other studies could investigate more complicated adaptation
schemes that keep a larger history of contention adaptations that have recently occurred.
For example, if the previous five adaptations in a region of the LFCAT have been splits,
then on the sixth split adaptation the node could be preemptively split into a binary tree
with four leaf nodes in an attempt to predict the next necessary adaptation.

References

[1] Jing Han, Haihong E, Guan Le, and Jian Du. Survey on nosql database. In 2011 6th
International Conference on Pervasive Computing and Applications, pages 363-366, Oct
2011.

[2] Konstantinos Sagonas and Kjell Winblad. Contention adapting search trees. pages 215—
224, 06 2015.

[3] Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson. Lock-free contention adapting
search trees. pages 121-132, 07 2018.

[4] Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In OPODIS, 2011.

[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,
Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics.
SIGPLAN Not., 52(8):357-369, January 2017.

14



	Introduction
	Contention Adaptation
	Related Works
	Data Structure Overview
	Node Types
	High Contention Adaptation
	Range Queries
	Low Contention Adaptation

	Implementation
	Testing
	Results
	LFCAT Performance
	Varying Range Query Sizes
	Limiting AVL Tree Size
	STM Performance

	Conclusion
	Future Work

